瑞星卡卡安全论坛技术交流区系统软件 ◆电脑知识集合帖◆【4月1日更新】

«23456789   7  /  9  页   跳转

◆电脑知识集合帖◆【4月1日更新】

回复: ◆电脑知识集合帖◆

电脑软件安装的四种方式
 
  当我们在安装软件的过程中,常会遇见让你自己选择安装方式。最常见的有最小安装、典型安装、自定义安装和完全安装等四种方式。这几种方式有什么不同吗?请接着往下看。

  最小安装

  只安装运行此软件必须的部分,主要是满足硬盘空间紧张的用户需要。比如在安装字处理软件时,选择此方式会放弃安装一些不常用的字体而只安装很少几种必须的字体。

  典型安装

  选择它后,安装程序将自动为你安装最常用的选项。它是为初级用户提供的最简单的安装方式,你无须为安装进行任何选择和设置。用这种方式安装的软件可为你实现各种最基本、最常见的功能,但所需的磁盘空间较大。

  完全安装

  选择它会自动将软件中的所有功能全部安装,但它需要的磁盘空间最多。如果你想全面地了解某个软件,又拿不准到底要安装哪些部分时,最好选择安全安装,以免少安装了什么组件而不能使用其中的某个功能。

  自定义安装

  自己选择要安装软件的哪些功能组件。选择它后,安装程序会提供给你一张清单列表,你可以根据自己的实际需要选择要安装的项目并清除不需要的安装项目(你只要在需要选择的项目前的复选框中打钩,即可选定,而该安装项目的内容也会出现在"说明"框中)。如果选择"自定义安装"后,又单击"全部选中"按钮,就又跟选择"完全安装"一样了。

最后来认识下电脑的硬件部分
  键盘是我们最常使用的输入设备。整个键盘大体可划分为以下四个区域

  1.打字机键区

  这个键区共有61个键,键名的安排与英文打字机类似,包括26个英文字母、10个数字、各种标点符号、空格、回车及一些控制键,我们输入信息主要是利用这一部分。

  2.光标键区

  这部分共13个键, 一般是利用这些键来进行光标移动和菜单选择,由此而得名。

  3.小键盘区

  该部分和财务计算器的键盘相同,用于快速输入数字等。配合Num Lock键可以在光标功能键和数字键之间切换。Num Lock为开关键,状态由指示灯面板上的Num Lock指示灯来显示,该键开机后的起始状态一般默认为数字功能键。

  4、功能键区

  该键区包括12个F键及一个ESC键,一般用来做软件的功能热键。如F1为帮助,ESC为退出等。

  我们现在使用的大多数是104键盘,它比101键盘多出两个Win(Windows)键、一个APP(Application)键。Win键与其它键配合使用可以在Windows中实现一些常用功能(见后)。APP键用做键盘的保留键,不同的程序对其有不同的定义,一般等效于单击鼠标右键或调出选定对象的属性菜单

附:Win键的功能
  Win 为打开"启动菜单"
  Win + E启动"资源管理器";
  Win + F显示"查找"对话框;
  Win + M为"最小化所有窗口";
  Win + R为打开"运行"窗口;
  Win + F1弹出"帮助主题:Windows帮助"窗口;
  Win +Tab可切换系统工具栏中的应用程序;
  Win + Break打开"系统属性"窗口;
  Win + Shift + M为"撤消最小化所有窗口";
  Win + Ctrl + F显示"查找计算机"对话框。


缩略语
 
  RISC(Reduced Instruction Set Computer)精简指命系统计算机

  一种CPU,它把微处理器能执行的指令数目减少到最低限度以提高处理速度。RISC体系结构的思想是精简指令,突出并优化最常使用的指令,以达到尽可能快的执行速度。

  SCSI(Small Computer System Interface)小型计算机系统接口

  是一种用于快速数据传输的标准并行接口。SCSI接口可以连接多台设备,并为每一台设备分配一个地址,用来表示此台设备的优先级,然后SCSI按优先级的高低发送数据。使用SCSI发送数据的速度高于其它接口,可达每秒32MB。在SCSI上最常连接的外设是硬盘,而现在许多机器的硬盘是接在IDE口。

  SOHU(Small Office / Home Office)小型办公室与家庭办公室

  URL(Uniform Resource Locator)通用资源定位器

  识别Internet上的文档或资源的一种标准化方法。例如,http://www.sv
i.org/svi/events.html表明采用HTTP协议从名为www.svi.org的服务器上的目录SVI中获得文件events.html

  UPS(Uninterruptible Power Supply)不间断电源

  在电源中断时,UPS能够给计算机继续供电一段时间,以便用户存盘退出。不间断电源是计算机系统的一个必备的设备,否则一旦发生电源故障,将导致重要数据的丢失。

  VOD(Video on Demand)视频点播

  使得用户可以远程点播并观看视频节目的一种技术。

  W3C(WWW Consortium)WWW协会

  制定WWW标准的组织。

  WYSIWYG(What You See Is What You Get)所见即所得

  指在屏幕上所显示的字号、字体及排版与打印机打印出来的相同。但是在有些情况下并不能做到真正的百分之百相同。
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复: ◆电脑知识集合帖◆

                          怎么设置网络防火墙不当内网的绊脚石
      最近,果冻接到了好几个同事的“投诉”,他们反映无法通过网上邻居对草莓的共享文件夹进行访问,果冻在自己的电脑上试了一下,确实如此。然而,在草莓的电脑上访问其他计算机又很正常。
  不过,果冻看到了草莓新安装的天网防火墙,这时他恍然大悟。就是这防火墙把大伙挡在了“门外”。原来草莓担心自己的电脑被病毒侵扰,就安装了防火墙,没想到给别人造成了麻烦。应草莓这帮菜鸟的要求,果冻对各种常用的防火墙软件在局域网内的正确设置进行了讲解。

  天网防火墙

  首先要介绍的当然是天网防火墙(2.60版)这个 “肇事者”了。在这款防火墙刚安装完成后就会弹出一个设置向导。但是,很多用户都没有注意到这个设置向导,随意点击几下便完成了安装(草莓便是这种“大马虎”),结果不正确的配置引起了网络故障。

  如果要解决这种因为初始设置不正确而导致的网络故障,我们可以重新调出向导进行设置。在天网防火墙的主面板上点击“系统设置”按钮,在弹出的“系统设置”窗口中,点击“规则设定”中的“向导”(图1),就会弹出设置向导。
图1  在“安全级别设置”对话框中选择好安全级别(局域网内的用户可以选择“低”)后再点击“下一步”按钮,进入“局域网信息设置”窗口。勾选“我的电脑在局域网中使用”,软件便会自动探测本机的IP地址并显示在下方。接下来,一路点击“下一步”按钮即可完成设置了。

  果冻提示 我们也可以只允许局域网内的某台电脑访问自己的共享资料,以达到保密的目的。在防火墙主面板上点击“IP规则管理”按钮,在弹出的IP规则列表中找到和局域网访问相关的规则并双击它,进入“IP规则修改”对话框,按照图2所示进行设置即可。
图2  诺顿个人防火墙

  在软件的主界面左侧点击“Internet区域控制”选项,在右侧窗口进入“信任区域”选项卡,点击“添加”按钮,打开“指定计算机”对话框。在该对话框中选择“使用范围”,然后在下面输入允许访问的起始地址和结束地址即可。

  例如,果冻办公室的IP地址范围是172.22.1.2~172.22.1.253,现在只要将起止IP地址输入,点击“确定”按钮使设置生效之后,在这个区段内的所有IP就都可以正常访问草莓的电脑了。

  果冻提示 其实我们可以不将该网段的所有IP地址囊括进来,大家可以根据自己所在局域网的实际情况来确定IP的范围。

  江民黑客防火墙

  在这款防火墙的主界面上点击“IP规则设置”按钮,弹出IP规则列表。在这个IP规则列表中,可找到和局域网有关的两条IP规则:“允许本机连接局域网内的其它机器”、“局域网内的其它机器访问本机(TCP)”(图3)。
图3  如果要修改“局域网内的其它机器访问本机(TCP)”规则,可点击该规则所对应的编辑按钮,打开“反黑王规则设定”对话框,在其中的“对方IP地址”下拉列表中选择“地址范围”,并将本局域网的网段添加进来即可。如果你真的不希望被网内的其他用户访问,也可以在“局域网内的其它机器访问本机”这条规则内进行设置。
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复: ◆电脑知识集合帖◆

让XP SP3也支持网络级身份验证!
      SP3有一点,就是远程桌面更新到了V6.1。查看了相关网页,了解到6.0以上版本的远程桌面是支持NLA(Network Level Authentication )的。NLA说白了就是在你进行远程桌面之前就进行身份验证,而不是你连上之后再在登陆的时候进行身份验证。而Vista 默认是“只允许运行带网络身份验证的远程计算机连接”。于是乎,我从SP3连Vista失败。




    网上解决办法是:设置vista的远程桌面连接方式为“允许任意版本远程桌面连接”。这种降级来适应XP,我以为是一种倒退,不然将XP 的远程桌面升级到6.1没有任何意义啊。微软工程师起初的答复是XP不支持NLA。后来纠正说SP3支持NLA,并告诉我按照以下方法操作使XP支持NLA。他给我我一片KB:http://support.microsoft.com/kb/951608/
    开启NLA操作是:
    1. 单击 开始 ,单击 运行 ,键入 regedit ,然后按 ENTER 键。
    2. in navigation pane,locate and then click following registry subkey:
    HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
    3. 在详细信息窗格中, 用鼠标右键单击 SecurityProviders ,然后单击 修改 。
    4. 在 数值数据 框,键入 tspkg 。 留下特定于其他 SSP,任何数据,然后单击 确定 。
    5. in navigation pane,locate and then click following registry subkey:
    HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders
    6. in details pane,right-click SecurityProviders,and then click Modify 。
    7. 在 数值数据 框,键入 credssp.dll 。 留下特定于其他 SSP,任何数据,然后单击 确定 。
    8. exit Registry Editor。
    9. 请重新启动计算机。.
    按KB操作,在XP的远程桌面中看到了支持网络级身份验证。

    输入vista 主机的IP,哎,有了,要求身份验证:

    很不幸,发生身份验证错误:发生身份验证错误(代码:0x80090303)
    再次向微软工程师,工程师也不知道具体所在,但是提供了一些排错方法,最后是通过抓取网络包来排查故障,发现是因为我在进行远程连接的时候输入的是IP地址,而不是计算机名(VISTA加入了域,XP未加域,而且XP的DNS与VISTA的不同,不在同一个网段),导致Kerberos验证失败。在HOST文件中加入域控和vista机器的域名解析,终于连接成功。
    我对为什么要输入计算机名而不是IP大惑不解,因为我们通常都是用ip来连接目标主机的,工程师给出的答复是:
    这也是kerberos验证的特性决定的. 要进行kerberos的验证, 要用到SPN (service principle name). 而 SPN都是用计算机名称注册的. 所以我们必须使用计算机名称来连接Windows Vista, 而 不能使用IP地址.
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复: ◆电脑知识集合帖◆

利用BAT批处理轻松创建分类目录
对董师傅这样的软件狂人来说,从各大网站上下载各种新奇好用的软件,几乎是每天都要做的事情,日久天长,硬盘中的软件越来越多。但是,当我们需要用到某款软件时,经常会找不到该软件在硬盘的什么位置。如果我们提前建立一个大型的软件分类目录并将软件按分类存放,以后查找软件时就方便多了。但而这样的软件分类目录一般会包含多个文件夹,新建文件夹并重命名,所有的工作仅靠人工来完成的话,工作量实在是太大了。怎样才能解决这个棘手的问题呢?下面,就给大家介绍一个用批处理命令快速建立一个标准的大型软件分类目录的“懒人办法”。  第一步:先在一个硬盘空间比较大的分区的根目录下(如E盘)新建一个名为“软件下载”的文件夹,接着在IE的地址栏输入某网站的软件分类页面的地址,比如天空软件站的软件分类页面www.skycn.com/sort/soft_sort.html,回车,然后单击菜单“文件→另存为”命令,将这个页面另存为一个文本文件,保存到“E:软件下载”目录下,文件名为“软件分类目录.txt”。
  第二步:打开“软件分类目录.txt”文件,删除这个文本文件中和软件分类无关的多余文字和空格,然后分别在每一大类的软件分类名称的左边输入数字1并按下空格键(如图1),编辑完毕后保存对该文本文件所做的修改。

  
  图1

  第三步:新建一个名为“软件分类目录”的批处理文件,其内容如下:
@echo off
  set root=%cd%
  setlocal ENABLEDELAYEDEXPANSION
  for /f "tokens=*" %%i in (软件分类目录.txt) do (
  set list=%%i
  set new=md !list!
  if "!list:~0,1!"=="1" cd %root% & md !list:~2! & cd !list:~2! & set new=
  !new!
  )
  上述内容输入完毕后,把这个批处理文件也保存到“E:软件下载”目录下,最后双击运行它,就可以在“E:软件下载”目录下生成一个标准的大型软件分类目录了(如图2),打开图2中任何一个目录(如“网络软件”),大家会发现该目录下还有以图1中A处的文字为分类标准建立的一些子目录。这样,当我们以后再下载软件时,只需要对号入座,将该软件保存到相应的目录下就可以了。

  

  图二

专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复: ◆电脑知识集合帖◆

仅可写文制表?微软或推简版Office2010
据Mary-Jo Foley的博客称,在与微软公司的官员讨论后得知,该公司正在计划尝试分发Office 2010产品时引入各种新方法。最引人注目的就是一个精简版本,这种版本仅仅包含最为常用的Word 2010和Excel 2010,并且这两个版本也经过功能缩减只能查看和编辑文档,完全免费,通过广告来支持产品开发和支持花费,这种简化版的Office 2010版本将取代Microsoft Works在PC上预装。


Office 2010新产品密钥卡

  Office 2010还将发布一种新的产品密钥卡,用户只需要简单地输入KEY就可以在三个完整版Microsoft Office 2010中进行相互转换,这非常有利于预装简版用户的升级操作。
  Office 2010还引入了Click-to-Run的特性,将完全体现安装智能化,您不再需要下载安装Office软件,每个组件都是可以直接下载直接使用。目前 微软没有公布任何产品密钥卡和Click-to-Run特性的定价细节,但从中我们可以看出,Google Docs给微软带来了多大压力。
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复: ◆电脑知识集合帖◆

      史上最全的电脑DIY基本知识菜鸟综合总结篇(一)
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复:◆电脑知识集合帖◆

CPU类:

1. ES版的CPU:ES(Engineering Sample)是工程样品,一般是在新的CPU批量生产前制造,供测试用的CPU。

2. CPU与内存同步(异步)超频:

CPU与内存同步即调整CPU外频并使内存频率与之同频工作。

举例:Intel Core 2 Duo E4300默认外频是200MHz,

宇瞻 黑豹II代 DDRII667 1G默认频率是333MHz,

若将CPU外频提升至333MHz,此时CPU外频和内存频率相等,即CPU与内存同步超频。

CPU与内存异步则是指两者的工作频率可存在一定差异。该技术可令内存工作在高出或低于系统总线速度33MHz或3:4、4:5(CPU外频:内存频率)的频率上,这样可以缓解超频时经常受限于内存的“瓶颈”。

3. CPU的CnQ技术:

CnQ是Cool & Quiet的简称,跟Intel的SpeedStep及AMD移动平台CPU的PowerNow!功能近似,这是AMD用于桌面处理器的一项节能降耗的新技术。其作用是在CPU闲置时降低频率和电压,以减少发热量和能耗;在CPU高负荷运行时提高频率和电压,确保任务运算的顺利完成。CnQ的这种CPU能耗的调节功能可以事先通过相关的CnQ管理工具预置并随时调整。在目前CPU发热量和能耗都大幅提升的前提下,CnQ显得非常实用,能确保系统的稳定性和安全性。

目前,Athlon 64系列处理器除了ClawHammer核心的部分产品不支持CnQ外,其余均支持。值得一提的是,AMD低端的Sempron系列处理器也支持该项技术。不过由于Athlon 64产品核心和步进代号不同,对CnQ的支持程度也有所不同。

4. 扣肉CPU:

是intel推出的新一代CPU是他们用来对付竞争对手AMD的最新产品AM2的武器采用CORE DUO而不是我们常见的构架了。它的中文发音是"酷瑞"(标准的应该是酷睿,这里方便各位理解),所以读起来有点像扣肉。

5. DIY领域中的OC:

“OC”,英文全称“OverClock”,即超频。翻译过来的意思是超越标准的时钟频率。超频者就是"OverClocker"。

6. CPU外频和CPU的总线频率之间的关系(感谢网友大头彬提供资料)

(1)前端总线(FSB):英文全称Front Side Bus。

对Intel平台来说前端总线是PC内部2台设备之间传递数字信号的桥梁。CPU可以通过前端总线(FSB)与内存、显卡及其他设备通信。FSB频率越快,处理器在单位时间里得到更多的数据,处理器利用率越高。

对于AMD,K8以后系列CPU来说,由于其CPU内部集成了内存控制器,也就没有了前端总线这个概念,取而代之的是H-T总线频率。

(2)Intel 前端总线(FSB)带宽:

FSB带宽表示FSB的数据传输速度,单位MB/s或GB/s 。

FSB带宽=FSB频率*FSB位宽/8,现在FSB位宽都是64位。

举例:Intel Core 2 Duo E4300的FSB频率是800MHz,

则其FSB带宽=800*64/8=6.4GB/s。

AMD的总线带宽计算与Intel的不同,具体可用相关软件查看。(感谢网友穷啊穷指出错误)

(3)CPU外频与总线频率的关系:

Intel FSB频率=Intel P4 CPU外频*4

7. AMD的H-T总线

HT是HyperTransport的简称。HyperTransport本质是一种为主板上的集成电路互连而设计的端到端总线技术,目的是加快芯片间的数据传输速度。HyperTransport技术在AMD平台上使用后,是指AMD CPU到主板芯片之间的连接总线(如果主板芯片组是南北桥架构,则指CPU到北桥),即HT总线。类似于Intel平台中的前端总线(FSB),但Intel平台目前还没采用HyperTransport技术。“HyperTransport”构架不但解决了随着处理器性能不断提高同时给系统架构带来的很多问题,而且更有效地提高了总线带宽。

灵活的HyperTransport I/O总线体系结构让CPU整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样前端总线的概念也就无从谈起了。

8. CPU主频

CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。比如AMD公司的AthlonXP系列CPU大多都能以较低的主频,达到英特尔公司的Pentium 4系列CPU较高主频的CPU性能,所以AthlonXP系列CPU才以PR值的方式来命名。因此主频仅是CPU性能表现的一个方面,而不代表CPU的整体性能。

CPU的主频不代表CPU的速度,但提高主频对于提高CPU运算速度却是至关重要的。举个例子来说,假设某个CPU在一个时钟周期内执行一条运算指令,那么当CPU运行在100MHz主频时,将比它运行在50MHz主频时速度快一倍。因为100MHz的时钟周期比50MHz的时钟周期占用时间减少了一半,也就是工作在100MHz主频的CPU执行一条运算指令所需时间仅为10ns比工作在50MHz主频时的20ns缩短了一半,自然运算速度也就快了一倍。只不过电脑的整体运行速度不仅取决于CPU运算速度,还与其它各分系统的运行情况有关,只有在提高主频的同时,各分系统运行速度和各分系统之间的数据传输速度都能得到提高后,电脑整体的运行速度才能真正得到提高。
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复: ◆电脑知识集合帖◆

9. CPU核心类型

在CPU漫长的历史中伴随着纷繁复杂的CPU核心类型,以下分别就Intel CPU和AMD CPU的主流核心类型作一个简介。

(1)INTEL核心

Tualatin

这也就是大名鼎鼎的“图拉丁”核心,是Intel在Socket 370架构上的最后一种CPU核心,采用0.13um制造工艺,封装方式采用FC-PGA2和PPGA,核心电压也降低到了1.5V左右,主频范围从1GHz到1.4GHz,外频分别为100MHz(赛扬)和133MHz(Pentium III),二级缓存分别为512KB(Pentium III-S)和256KB(Pentium III和赛扬),这是最强的Socket 370核心,其性能甚至超过了早期低频的Pentium 4系列CPU。

Willamette

这是早期的Pentium 4和P4赛扬采用的核心,最初采用Socket 423接口,后来改用Socket 478接口(赛扬只有1.7GHz和1.8GHz两种,都是Socket 478接口),采用0.18um制造工艺,前端总线频率为400MHz, 主频范围从1.3GHz到2.0GHz(Socket 423)和1.6GHz到2.0GHz(Socket 478),二级缓存分别为256KB(Pentium 4)和128KB(赛扬),注意,另外还有些型号的Socket 423接口的Pentium 4居然没有二级缓存!核心电压1.75V左右,封装方式采用Socket 423的PPGA INT2,PPGA INT3,OOI 423-pin,PPGA FC-PGA2和Socket 478的PPGA FC-PGA2以及赛扬采用的PPGA等等。Willamette核心制造工艺落后,发热量大,性能低下,已经被淘汰掉,而被Northwood核心所取代。

Northwood

这是主流Pentium 4和赛扬所采用的核心,其与Willamette核心最大的改进是采用了0.13um制造工艺,并都采用Socket 478接口,核心电压1.5V左右,二级缓存分别为128KB(赛扬)和512KB(Pentium 4),前端总线频率分别为400/533/800MHz(赛扬都只有400MHz),主频范围分别为2.0GHz到2.8GHz(赛扬),1.6GHz到2.6GHz(400MHz FSB Pentium 4),2.26GHz到3.06GHz(533MHz FSB Pentium 4)和2.4GHz到3.4GHz(800MHz FSB Pentium 4),并且3.06GHz Pentium 4和所有的800MHz Pentium 4都支持超线程技术(Hyper-Threading Technology),封装方式采用PPGA FC-PGA2和PPGA。按照Intel的规划,Northwood核心会很快被Prescott核心所取代。

Prescott

这是Intel新的CPU核心,最早使用在Pentium 4上,现在低端的赛扬D也大量使用此核心,其与Northwood最大的区别是采用了0.09um制造工艺和更多的流水线结构,初期采用Socket 478接口,以后会全部转到LGA 775接口,核心电压1.25-1.525V,前端总线频率为533MHz(不支持超线程技术)和800MHz(支持超线程技术),主频分别为533MHz FSB的2.4GHz和2.8GHz以及800MHz FSB的2.8GHz、3.0GHz、3.2GHz和3.4GHz,其与Northwood相比,其L1 数据缓存从8KB增加到16KB,而L2缓存则从512KB增加到1MB,封装方式采用PPGA。按照Intel的规划,Prescott核心会很快取代Northwood核心并且很快就会推出Prescott核心533MHz FSB的赛扬。

Prescott 2M

Prescott 2M是Intel在台式机上使用的核心,与Prescott不同,Prescott 2M支持EM64T技术,也就说可以使用超过4G内存,属于64位CPU,这是Intel第一款使用64位技术的台式机CPU。Prescott 2M核心使用90nm制造工艺,集成2M二级缓存,800或者1066MHz前端总线。目前来说P4的6系列和P4EE CPU使用Prescott 2M核心。Prescott 2M本身的性能并不是特别出众,不过由于集成了大容量二级缓存和使用较高的频率,性能仍然有提升。此外Prescott 2M核心支持增强型IntelSpeedStep技术 (EIST),这技术完全与英特尔的移动处理器中节能机制一样,它可以让Pentium 4 6系列处理器在低负载的时候降低工作频率,这样可以明显降低它们在运行时的工作热量及功耗。

Smithfield

Smithfield基于双个采用90nm制程的Prescotts的核心。Smithfield相当于是两个Prescott核心的处理器的结合体,整合了一个可以平衡两个内核之间总线执行的仲裁逻辑,通过“中断机制”来平衡分配两个核心的工作。

Presler

这是Pentium D 9XX和Pentium EE 9XX采用的核心,Intel于2005年末推出。基本上可以认为Presler核心是简单的将两个Cedar Mill核心松散地耦合在一起的产物,是基于独立缓存的松散型耦合方案,其优点是技术简单,缺点是性能不够理想。Presler核心采用65nm制造工艺,全部采用Socket 775接口,核心电压1.3V左右,封装方式都采用PLGA,都支持硬件防病毒技术EDB、节能省电技术EIST和64位技术EM64T,并且除了 Pentium D 9X5之外都支持虚拟化技术Intel VT。前端总线频率是800MHz(Pentium D)和1066MHz(Pentium EE)。与Smithfield核心类似,Pentium EE和Pentium D的最大区别就是Pentium EE支持超线程技术而Pentium D则不支持,并且两个核心分别具有2MB的二级缓存。在CPU内部两个核心是互相隔绝的,其缓存数据的同步同样是依靠位于主板北桥芯片上的仲裁单元通过前端总线在两个核心之间传输来实现的,所以其数据延迟问题同样比较严重,性能同样并不尽如人意。Presler核心与Smithfield核心相比,除了采用65nm制程、每个核心的二级缓存增加到2MB和增加了对虚拟化技术的支持之外,在技术上几乎没有什么创新,基本上可以认为是Smithfield核心的65nm制程版本。Presler核心也是Intel处理器在NetBurst架构上的最后一款双核心处理器的核心类型,可以说是在NetBurst被抛弃之前的最后绝唱,以后Intel桌面处理器全部转移到Core架构。按照Intel的规划,Presler核心从2006年第三季度开始将逐渐被 Core架构的Conroe核心所取代。

Conroe

这是更新的Intel桌面平台双核心处理器的核心类型,其名称来源于美国德克萨斯州的小城市“Conroe”。Conroe核心于2006年7月27日正式发布,是全新的Core(酷睿)微架构(Core Micro-Architecture)应用在桌面平台上的第一种CPU核心。目前采用此核心的有Core 2 Duo E6x00系列和Core 2 Extreme X6x00系列。与上代采用NetBurst微架构的Pentium D和Pentium EE相比,Conroe核心具有流水线级数少、执行效率高、性能强大以及功耗低等等优点。Conroe核心采用65nm制造工艺,核心电压为1.3V左右,封装方式采用PLGA,接口类型仍然是传统的Socket 775。在前端总线频率方面,目前Core 2 Duo和Core 2 Extreme都是1066MHz,而顶级的Core 2 Extreme将会升级到1333MHz;在一级缓存方面,每个核心都具有32KB的数据缓存和32KB的指令缓存,并且两个核心的一级数据缓存之间可以直接交换数据;在二级缓存方面,Conroe核心都是两个内核共享4MB。Conroe核心都支持硬件防病毒技术EDB、节能省电技术EIST和64位技术EM64T以及虚拟化技术Intel VT。与Yonah核心的缓存机制类似,Conroe核心的二级缓存仍然是两个核心共享,并通过改良了的Intel Advanced Smart Cache(英特尔高级智能高速缓存)共享缓存技术来实现缓存数据的同步。Conroe核心是目前最先进的桌面平台处理器核心,在高性能和低功耗上找到了一个很好的平衡点,全面压倒了目前的所有桌面平台双核心处理器,加之又拥有非常不错的超频能力,确实是目前最强劲的台式机CPU核心。

Allendale

这是与Conroe同时发布的Intel桌面平台双核心处理器的核心类型,其名称来源于美国加利福尼亚州南部的小城市“Allendale”。 Allendale核心于2006年7月27日正式发布,仍然基于全新的Core(酷睿)微架构,目前采用此核心的有1066MHz FSB的Core 2 Duo E6x00系列,即将发布的还有800MHz FSB的Core 2 Duo E4x00系列。Allendale核心的二级缓存机制与Conroe核心相同,但共享式二级缓存被削减至2MB。Allendale核心仍然采用 65nm制造工艺,核心电压为1.3V左右,封装方式采用PLGA,接口类型仍然是传统的Socket 775,并且仍然支持硬件防病毒技术EDB、节能省电技术EIST和64位技术EM64T以及虚拟化技术Intel VT。除了共享式二级缓存被削减到2MB以及二级缓存是8路64Byte而非Conroe核心的16路64Byte之外,Allendale核心与 Conroe核心几乎完全一样,可以说就是Conroe核心的简化版。当然由于二级缓存上的差异,在频率相同的情况下Allendale核心性能会稍逊于 Conroe核心。

(2)AMD CPU核心

AMD CPU种类:毒龙(Duron) 闪龙(Semptron) 速龙(Athlon) 速龙双核心(Athlonx2) 皓龙(Opteron) 炫龙(Turion)。

一、Athlon(速龙) XP的核心类型


Athlon XP有4种不同的核心类型,但都有共同之处:都采用Socket A接口而且都采用PR标称值标注。

Palomino

这是最早的Athlon XP的核心,采用0.18um制造工艺,核心电压为1.75V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz。

Thoroughbred

这是第一种采用0.13um制造工艺的Athlon XP核心,又分为Thoroughbred-A和Thoroughbred-B两种版本,核心电压1.65V-1.75V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz和333MHz。

Thorton

采用0.13um制造工艺,核心电压1.65V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为333MHz。可以看作是屏蔽了一半二级缓存的Barton。

Barton

采用0.13um制造工艺,核心电压1.65V左右,二级缓存为512KB,封装方式采用OPGA,前端总线频率为333MHz和400MHz。

二、新Duron(毒龙)的核心类型

AppleBred

采用0.13um制造工艺,核心电压1.5V左右,二级缓存为64KB,封装方式采用OPGA,前端总线频率为266MHz。没有采用PR标称值标注而以实际频率标注,有1.4GHz、1.6GHz和1.8GHz三种。

三、Semptron(闪龙)系列CPU的核心类型

Paris

Paris核心是Barton核心的继任者,主要用于AMD的闪龙,早期的754接口闪龙部分使用Paris核心。Paris采用90nm制造工艺,支持iSSE2指令集,一般为256K二级缓存,200MHz外频。Paris核心是32位CPU,来源于K8核心,因此也具备了内存控制单元。CPU内建内存控制器的主要优点在于内存控制器可以以CPU频率运行,比起传统上位于北桥的内存控制器有更小的延时。使用Paris核心的闪龙与Socket A接口闪龙CPU相比,性能得到明显提升。

Palermo

Palermo核心目前主要用于AMD的闪龙CPU,使用Socket 754接口、90nm制造工艺,1.4V左右电压,200MHz外频,128K或者256K二级缓存。Palermo核心源于K8的Wincheste核心,不过是32位的。除了拥有与AMD高端处理器相同的内部架构,还具备了EVP、Cool‘n’Quiet;和HyperTransport等AMD独有的技术,为广大用户带来更“冷静”、更高计算能力的优秀处理器。由于脱胎与ATHLON64处理器,所以Palermo同样具备了内存控制单元。CPU内建内存控制器的主要优点在于内存控制器可以以CPU频率运行,比起传统上位于北桥的内存控制器有更小的延时。

Manila

这是2006年5月底发布的第一种Socket AM2接口Sempron的核心类型,其名称来源于菲律宾首都马尼拉(Manila)。Manila核心定位于桌面低端处理器,采用90nm制造工艺,不支持虚拟化技术AMD VT,仍然采用800MHz的HyperTransport总线,二级缓存为256KB或128KB,最大亮点是支持双通道DDR2 667内存,这是其与只支持单通道DDR 400内存的Socket 754接口Sempron的最大区别。Manila核心Sempron分为TDP功耗62W的标准版(核心电压1.35V左右)和TDP功耗35W的超低功耗版(核心电压1.25V左右)。除了支持双通道DDR2之外,Manila核心Sempron相对于以前的Socket 754接口Sempron并无架构上的改变,性能并无多少出彩之处。

四、Athlon(速龙) 64系列CPU的核心类型

Sledgehammer

Sledgehammer是AMD服务器CPU的核心,是64位CPU,一般为940接口,0.13微米工艺。Sledgehammer功能强大,集成三条HyperTransprot总线,核心使用12级流水线,128K一级缓存、集成1M二级缓存,可以用于单路到8路CPU服务器。Sledgehammer集成内存控制器,比起传统上位于北桥的内存控制器有更小的延时,支持双通道DDR内存,由于是服务器CPU,当然支持ECC校验。

Clawhammer

采用0.13um制造工艺,核心电压1.5V左右,二级缓存为1MB,封装方式采用mPGA,采用Hyper Transport总线,内置1个128bit的内存控制器。采用Socket 754、Socket 940和Socket 939接口。

Newcastle

其与Clawhammer的最主要区别就是二级缓存降为512KB(这也是AMD为了市场需要和加快推广64位CPU而采取的相对低价政策的结果),其它性能基本相同。

Wincheste

Wincheste是比较新的AMD Athlon 64CPU核心,是64位CPU,一般为939接口,0.09微米制造工艺。这种核心使用200MHz外频,支持1GHyperTransprot总线,512K二级缓存,性价比较好。Wincheste集成双通道内存控制器,支持双通道DDR内存,由于使用新的工艺,Wincheste的发热量比旧的Athlon小,性能也有所提升。

五、速龙双核心(Athlonx2)CPU核心类型

Toledo

这是AMD于2005年4月在桌面平台上的新款高端双核心处理器的核心类型,它和Manchester核心非常相似,差别在于二级缓存不同。Toledo是在San Diego核心的基础上演变而来,基本上可以看作是两个San diego核心简单地耦合在一起,只不过协作程度比较紧密罢了,这是基于独立缓存的紧密型耦合方案,其优点是技术简单,缺点是性能仍然不够理想。Toledo核心采用90nm制造工艺,整合双通道内存控制器,支持1000MHz的HyperTransprot总线,全部采用Socket 939接口。Toledo核心的两个内核都独立拥有1MB的二级缓存,与Manchester核心相同的是,其缓存数据同步也是通过SRI在CPU内部传输的。Toledo核心与Manchester核心相比,除了每个内核的二级缓存增加到1MB之外,其它都完全相同,可以看作是Manchester核心的高级版。

Manchester

这是AMD于2005年4月发布的在桌面平台上的第一款双核心处理器的核心类型,是在Venice核心的基础上演变而来,基本上可以看作是两个Venice核心耦合在一起,只不过协作程度比较紧密罢了,这是基于独立缓存的紧密型耦合方案,其优点是技术简单,缺点是性能仍然不够理想。Manchester核心采用90nm制造工艺,整合双通道内存控制器,支持1000MHz的HyperTransprot总线,全部采用Socket 939接口。Manchester核心的两个内核都独立拥有512KB的二级缓存,但与Intel的Smithfield核心和Presler核心的缓存数据同步要依靠主板北桥芯片上的仲裁单元通过前端总线传输方式大为不同的是,Manchester核心中两个内核的协作程度相当紧密,其缓存数据同步是依靠CPU内置的SRI(System Request Interface,系统请求接口)控制,传输在CPU内部即可实现。这样一来,不但CPU资源占用很小,而且不必占用内存总线资源,数据延迟也比Intel的Smithfield核心和Presler核心大为减少,协作效率明显胜过这两种核心。不过,由于Manchester核心仍然是两个内核的缓存相互独立,从架构上来看也明显不如以Yonah核心为代表的Intel的共享缓存技术Smart Cache。当然,共享缓存技术需要重新设计整个CPU架构,其难度要比把两个核心简单地耦合在一起要困难得多。

Windsor

这是2006年5月底发布的第一种Socket AM2接口双核心Athlon 64 X2和Athlon 64 FX的核心类型,其名称来源于英国地名温莎(Windsor)。Windsor核心定位于桌面高端处理器,采用90nm制造工艺,支持虚拟化技术AMD VT,仍然采用1000MHz的HyperTransport总线,二级缓存方面Windsor核心的两个内核仍然采用独立式二级缓存,Athlon 64 X2每核心为512KB或1024KB,Athlon 64 FX每核心为1024KB。Windsor核心的最大亮点是支持双通道DDR2 800内存,这是其与只支持双通道DDR 400内存的Socket 939接口Athlon 64 X2和Athlon 64 FX的最大区别。Windsor核心Athlon 64 FX目前只有FX-62这一款产品,其TDP功耗高达125W;而Athlon 64 X2则分为TDP功耗89W的标准版(核心电压1.35V左右)、TDP功耗65W的低功耗版(核心电压1.25V左右)和TDP功耗35W的超低功耗版(核心电压1.05V左右)。Windsor核心的缓存数据同步仍然是依靠CPU内置的SRI(System request interface,系统请求接口)传输在CPU内部实现,除了支持双通道DDR2内存以及支持虚拟化技术之外,相对于以前的Socket 939接口Athlon 64 X2和双核心Athlon 64 FX并无架构上的改变,性能并无多少出彩之处。

Orleans

这是2006年5月底发布的第一种Socket AM2接口单核心Athlon 64的核心类型,其名称来源于法国城市奥尔良(Orleans)。Manila核心定位于桌面中端处理器,采用90nm制造工艺,支持虚拟化技术AMD VT,仍然采用1000MHz的HyperTransport总线,二级缓存为512KB,最大亮点是支持双通道DDR2 667内存,这是其与只支持单通道DDR 400内存的Socket 754接口Athlon 64和只支持双通道DDR 400内存的Socket 939接口Athlon 64的最大区别。Orleans核心Athlon 64同样也分为TDP功耗62W的标准版(核心电压1.35V左右)和TDP功耗35W的超低功耗版(核心电压1.25V左右)。除了支持双通道DDR2内存以及支持虚拟化技术之外,Orleans核心Athlon 64相对于以前的Socket 754接口和Socket 940接口的Athlon 64并无架构上的改变,性能并无多少出彩之处。
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复: ◆电脑知识集合帖◆

10. CPU接口类型

我们知道,CPU需要通过某个接口与主板连接的才能进行工作。CPU经过这么多年的发展,采用的接口方式有引脚式、卡式、触点式、针脚式等。而目前CPU的接口都是针脚式接口,对应到主板上就有相应的插槽类型。CPU接口类型不同,在插孔数、体积、形状都有变化,所以不能互相接插。

(1)Socket 775

Socket 775又称为Socket T,是目前应用于Intel LGA775封装的CPU所对应的接口,目前采用此种接口的有LGA775封装的Pentium 4、Pentium 4 EE、Celeron D和Conroe等CPU。与以前的Socket 478接口CPU不同,Socket 775接口CPU的底部没有传统的针脚,而代之以775个触点,即并非针脚式而是触点式,通过与对应的Socket 775插槽内的775根触针接触来传输信号。Socket 775接口不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率、降低生产成本。随着Socket 478的逐渐淡出,Socket 775将成为今后所有Intel桌面CPU的标准接口。

(2)Socket 754

Socket 754是2003年9月AMD64位桌面平台最初发布时的CPU接口,目前采用此接口的有低端的Athlon 64和高端的Sempron,具有754根CPU针脚。随着Socket 939的普及,Socket 754最终也会逐渐淡出。

(3)Socket 939

Socket 939是AMD公司2004年6月才推出的64位桌面平台接口标准,目前采用此接口的有高端的Athlon 64以及Athlon 64 FX,具有939根CPU针脚。Socket 939处理器和与过去的Socket 940插槽是不能混插的,但是,Socket 939仍然使用了相同的CPU风扇系统模式,因此以前用于Socket 940和Socket 754的风扇同样可以使用在Socket 939处理器。

(4)Socket 940

Socket 940是最早发布的AMD64位接口标准,具有940根CPU针脚,目前采用此接口的有服务器/工作站所使用的Opteron以及最初的Athlon 64 FX。随着新出的Athlon 64 FX改用Socket 939接口,所以Socket 940将会成为Opteron的专用接口。

(5)Socket 603

Socket 603的用途比较专业,应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是Xeon MP和早期的Xeon,具有603根CPU针脚。Socket 603接口的CPU可以兼容于Socket 604插槽。

(6)Socket 604

与Socket 603相仿,Socket 604仍然是应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是533MHz和800MHz FSB的Xeon。Socket 604接口的CPU不能兼容于Socket 603插槽。

(7)Socket 478

Socket 478接口是目前Pentium 4系列处理器所采用的接口类型,针脚数为478针。Socket 478的Pentium 4处理器面积很小,其针脚排列极为紧密。英特尔公司的Pentium 4系列和P4 赛扬系列都采用此接口。

(8)Socket A

Socket A接口,也叫Socket 462,是目前AMD公司Athlon XP和Duron处理器的插座接口。Socket A接口具有462插空,可以支持133MHz外频。

(9)Socket 423

Socket 423插槽是最初Pentium 4处理器的标准接口,Socket 423的外形和前几种Socket类的插槽类似,对应的CPU针脚数为423。Socket 423插槽多是基于Intel 850芯片组主板,支持1.3GHz~1.8GHz的Pentium 4处理器。不过随着DDR内存的流行,英特尔又开发了支持SDRAM及DDR内存的i845芯片组,CPU插槽也改成了Socket 478,Socket 423接口也就销声匿迹了。

(10)Socket 370

Socket 370架构是英特尔开发出来代替SLOT架构,外观上与Socket 7非常像,也采用零插拔力插槽,对应的CPU是370针脚。英特尔公司著名的“铜矿”和”图拉丁”系列CPU就是采用此接口。

(11)SLOT 1

SLOT 1是英特尔公司为Pentium Ⅱ系列CPU设计的插槽,其将Pentium Ⅱ CPU及其相关控制电路、二级缓存都做在一块子卡上,多数Slot 1主板使用100MHz外频。SLOT 1的技术结构比较先进,能提供更大的内部传输带宽和CPU性能。此种接口已经被淘汰,市面上已无此类接口的产品。

(12)SLOT 2

SLOT 2用途比较专业,都采用于高端服务器及图形工作站的系统。所用的CPU也是很昂贵的Xeon(至强)系列。Slot 2与Slot 1相比,有许多不同。首先,Slot 2插槽更长,CPU本身也都要大一些。其次,Slot 2能够胜任更高要求的多用途计算处理,这是进入高端企业计算市场的关键所在。在当时标准服务器设计中,一般厂商只能同时在系统中采用两个 Pentium Ⅱ处理器,而有了Slot 2设计后,可以在一台服务器中同时采用 8个处理器。而且采用Slot 2接口的Pentium Ⅱ CPU都采用了当时最先进的0.25微米制造工艺。支持SLOT 2接口的主板芯片组有440GX和450NX。

(13)SLOT A

SLOT A接口类似于英特尔公司的SLOT 1接口,供AMD公司的K7 Athlon使用的。在技术和性能上,SLOT A主板可完全兼容原有的各种外设扩展卡设备。它使用的并不是Intel的P6 GTL+ 总线协议,而是Digital公司的Alpha总线协议EV6。EV6架构是种较先进的架构,它采用多线程处理的点到点拓扑结构,支持200MHz的总线频率。

11. CPU针脚数

目前CPU都采用针脚式接口与主板相连,而不同的接口的CPU在针脚数上各不相同。CPU接口类型的命名,习惯用针脚数来表示,比如Pentium 4系列处理器所采用的Socket 478接口,其针脚数就为478针;而Athlon XP系列处理器所采用的Socket 462接口,其针脚数就为462针。

接口类型 针脚数

SOCKET 775 775

SOCKET 939 939

SOCKET 940 940

SOCKET 754 754

SOCKET A(462) 462

SOCKET 478 478

SOCKET 604 604

SOCKET 603 603

SOCKET 423 423

SOCKET 370 370

12. CPU封装技术

所谓“封装技术”是一种将集成电路用绝缘的塑料或陶瓷材料打包的技术。以CPU为例,我们实际看到的体积和外观并不是真正的CPU内核的大小和面貌,而是CPU内核等元件经过封装后的产品。

封装对于芯片来说是必须的,也是至关重要的。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。另一方面,封装后的芯片也更便于安装和运输。由于封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。封装也可以说是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强导热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁——芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件建立连接。因此,对于很多集成电路产品而言,封装技术都是非常关键的一环。

目前采用的CPU封装多是用绝缘的塑料或陶瓷材料包装起来,能起着密封和提高芯片电热性能的作用。由于现在处理器芯片的内频越来越高,功能越来越强,引脚数越来越多,封装的外形也不断在改变。封装时主要考虑的因素:

芯片面积与封装面积之比为提高封装效率,尽量接近1:1;

引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能;

基于散热的要求,封装越薄越好。

作为计算机的重要组成部分,CPU的性能直接影响计算机的整体性能。而CPU制造工艺的最后一步也是最关键一步就是CPU的封装技术,采用不同封装技术的CPU,在性能上存在较大差距。只有高品质的封装技术才能生产出完美的CPU产品。

CPU芯片的封装技术:

DIP技术、QFP技术、PFP技术、PGA技术、BGA技术

目前较为常见的封装形式:

OPGA封装、mPGA封装、CPGA封装、FC-PGA封装、

FC-PGA2封装、OOI 封装、PPGA封装、S.E.C.C.封装、

S.E.C.C.2 封装、S.E.P.封装、PLGA封装、CuPGA封装。

13. CPU的流水线(感谢网友belatedeffort提供建议)

对于CPU来说,它的工作可分为获取指令、解码、运算、结果几个步骤。其中前两步由指令控制器完成,后两步则由运算器完成。按照传统的方式,所有指令按顺序执行,先由指令控制器工作,完成一条指令的前两步,然后运算器工作,完成后两步,依此类推……很明显,当指令控制器工作时运算器基本上处于闲置状态,当运算器在工作时指令控制器又在休息,这样就造成了相当大的资源浪费。于是CPU借鉴了工业生产中被广泛应用的流水线设计,当指令控制器完成了第一条指令的前两步后,直接开始第二条指令的操作,运算器单元也是,这样就形成了流水线。流水线设计可最大限度地利用了CPU资源,使每个部件在每个时钟周期都在工作,从而提高了CPU的运算频率。

工业生产中采用增设工人的方法加长流水线作业可有效提高单位时间的生产量,而CPU采用级数更多的流水线设计可使它在同一时间段内处理更多的指令,有效提高其运行频率。如Intel在Northwood核心Pentium 4处理器中设计的流水线为20级,而在Prescott核心Pentium 4处理器中其流水线达到了31级,而正是超长流水线的使用,使得Pentium 4在和Athlon XP(整数流水线10级,浮点流水线15级)的频率大战中取得了优势。

CPU工作时,指令并不是孤立的,许多指令需要按一定顺序才能完成任务,一旦某个指令在运算过程中发生了错误,就可能导致整条流水线停顿下来,等待修正指令的修正,流水线越长级数越多,出错的几率自然也变得更大,旦出错影响也越大。在一条流水线中,如果第二条指令需要用到第一条指令的结果,这种情况叫做相关,一旦某个指令在运算过程中发生了错误,与之相关的指令也都会变得无意义。

最后,由于导电体都会产生延时,流水线级数越长导电延迟次数就越多,总延时自然也就越长,CPU完成单个任务的时间就越长。因此,流水线设计也不是越长越好的。

注意:CPU的流水线级数和CPU的倍频是两个完全不同的概念。

14. CPU的步进(Stepping)(感谢网友belatedeffort提供建议)

步进(Stepping)可以看作是CPU的版本,不同步进的CPU在超频能力、稳定性,BUG的处理方面是不同的,当然不同步进的CPU在功耗和发热方面也会有所不同的。在谈到哪款CPU好超频时,往往会说什么什么步进的哪款CPU好超之类的话(尤其是英特尔)而AMD往往是以哪个代号的核心比较好超来说的。

步进(Stepping)是CPU的一个重要参数,也叫分级鉴别产品数据转换规范,“步进”编号用来标识一系列CPU的设计或生产制造版本数据,步进的版本会随着这一系列CPU生产工艺的改进、BUG的解决或特性的增加而改变,也就是说步进编号是用来标识CPU的这些不同的“修订”的。同一系列不同步进的CPU或多或少都会有一些差异,例如在稳定性、核心电压、功耗、发热量、超频性能甚至支持的指令集方面可能会有所差异。

对于CPU制造商而言,步进编号可以有效地控制和跟踪所做的更改,也就是说可以对自己的设计、生产和销售过程进行有效的管理;而对于CPU的最终用户而言,通过步进编号则可以更具体的识别其系统所安装的CPU版本,确定CPU的内部设计或制作特性等等。步进编号就好比CPU的小版本号,而且步进编号与CPU编号和CPU ID是密切联系的,每次步进改变之后其CPU ID也可能会改变。

一般来说步进采用字母加数字的方式来表示,例如A0,B1,C2等等,字母或数字越靠后的步进也就是越新的产品。一般来说,步进编号中数字的变化,例如A0到A1,表示生产工艺较小的改进;而步进编号中字母的变化,例如A0到B1,则表示生产工艺比较大的或复杂的改进。

在选购CPU时,应该尽可能地选择步进比较靠后的产品。
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 

回复: ◆电脑知识集合帖◆

15. CPU的缓存

CPU缓存(Cache Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。

缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。

总的来说,CPU读取数据的顺序是先缓存后内存。

最早先的CPU缓存是个整体,而且容量很低。后来出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。

随着CPU制造工艺的发展,二级缓存也能轻易地集成在CPU内核中,容量也在逐年提升。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。

二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。

CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB、4MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高。

(以下内容选看)

CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。

为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。

16. CPU的功耗指标:TDP

TDP是反应一颗处理器热量释放的指标。TDP的英文全称是“Thermal Design Power”,中文直译是“热量设计功耗”。TDP功耗是处理器的基本物理指标。它的含义是当处理器达到负荷最大的时候,释放出的热量,单位未W。单颗处理器的TDP值是固定的,而散热器必须保证在处理器TDP最大的时候,处理器的温度仍然在设计范围之内。

处理器的功耗:是处理器最基本的电气性能指标。根据电路的基本原理,功率(P)=电流(A)×电压(V)。所以,处理器的功耗(功率)等于流经处理器核心的电流值与该处理器上的核心电压值的乘积。

处理器的峰值功耗:处理器的核心电压与核心电流时刻都处于变化之中,这样处理器的功耗也在变化之中。在散热措施正常的情况下(即处理器的温度始终处于设计范围之内),处理器负荷最高的时刻,其核心电压与核心电流都达到最高值,此时电压与电流的乘积便是处理器的峰值功耗。

处理器的功耗与TDP 两者的关系可以用下面公式概括:

处理器的功耗=实际消耗功耗+TDP

实际消耗功耗是处理器各个功能单元正常工作消耗的电能,TDP是电流热效应以及其他形式产生的热能,他们均以热的形式释放。从这个等式我们可以得出这样的结论:TDP并不等于是处理器的功耗,TDP要小于处理器的功耗。虽然都是处理器的基本物理指标,但处理器功耗与TDP对应的硬件完全不同:与处理器功耗直接相关的是主板,主板的处理器供电模块必须具备足够的电流输出能力才能保证处理器稳定工作;而TDP数值很大,单靠处理器自身是无法完全排除的,因此这部分热能需要借助主动散热器进行吸收,散热器若设计无法达到处理器的要求,那么硅晶体就会因温度过高而损毁。因此TDP也是对散热器的一个性能设计要求。
专业维修核潜艇、反应堆,xxx 头翻新、抛光、打蜡,回收二手航母,清洗航母油槽,航天飞机保养换三滤,高空作业清洗卫星表面灰尘,批发歼-10.F22.F35.B2轰炸机,各类xxx 头,量大从优,有xxx,三个月内提货,送两年免费保养和飞机后视镜。另承接火车补胎,订做蚊子眼睛,蚂蚁刨腹产等业务.有正规xxx,质量三包.另外新到一批野生散养奥特曼,纯天然,无污染.一批未调试的野生多啦A梦,欲购从速!!
gototop
 
«23456789   7  /  9  页   跳转
页面顶部
Powered by Discuz!NT