
IBM Global Technology Services
April 2008

Application-Specific Attacks:
Leveraging the ActionScript
Virtual Machine

By Mark Dowd
X-Force Researcher IBM Internet Security Systems
(markdowd@au1.ibm.com)

Introduction
Memory corruption vulnerabilities are becoming increasingly difficult to

exploit, largely due to the protection mechanisms being integrated into most

modern operating systems. As general protection mechanisms evolve, attackers

are engaging in more specific, low-level application-targeted attacks. In

order to refine general countermeasures (or at least raise awareness of their

shortcomings), it is important to first understand how memory corruption

vulnerabilities are exploited in some unique scenarios.

The following case study describes a unique exploitation scenario using a

recently disclosed flash vulnerability that was reported to Adobe by IBM

(advisory available at http://www.iss.net/threats/289.html). At first the

vulnerability seemed to offer limited exploitation options, but further analysis

uncovered an application-specific attack that results in reliable, consistent

exploitation. Achieving the same exploitation with more conventional methods

is unlikely. The technique presented leverages functionality provided by

the ActionScript Virtual Machine – an integral part of Adobe Flash Player.

Further, it will be shown that the vulnerability can be successfully exploited

without leaving telltale signs, such as a browser crash following the attack.

Although this document deals specifically with the Win32/intel platform,

similar attacks can most likely be carried out on the many other platforms

flash is available for. In particular, some of the methodology discussed might

be useful for constructing a robust exploit on Unix platforms as well as several

embedded platforms. Understanding the specific scenarios used to exploit

memory corruption vulnerabilities will help improve protection strategies.

2 Introduction
3 The Vulnerability
8 Exploiting the Bug
8 Basics
12 Breaking the Verifier
16 Constructing ActionScript

 ByteCode
18 The Dual Bytestream Problem
19 The Final ByteStream
22 Putting It All Together
22 Step 1. Perform Overwrite
23 Step 2. Insert Bogus

 DoABC Tag
23 Step 3. Insert Shellcode
24 Reliability Notes
24 Internet Explorer/Firefox

 Parallel Exploitation
25 Vista and ASLR

Contents

Leveraging the ActionScript Virtual Machine
Page 2

The Vulnerability
Before discussing exploitation, consider the nature of the vulnerability. Flash

is vulnerable to a memory corruption issue when processing a malicious

Shockwave Flash (SWF) file. An SWF file is simply a data file interpreted by

the Flash Player. It contains a header followed by a series of records (referred

to as ‘tags’) which describe various elements of a flash application – including

images, sprites, frames, buttons and so on. The file format is fully documented

by Adobe/Macromedia at http://download.macromedia.com/pub/flash/

licensing/file_format_specification_v9.pdf.

The vulnerability in question is an exploitable NULL-pointer dereference of

sorts, which enables an attacker to write data to an (almost) arbitrary offset

from address 0x00000000. The bug is quite simple; it occurs when processing

the “DefineSceneAndFrameLabelData” tag of an SWF file (tag ID 0x56). As

the name suggests, the tag defines label data for scenes and frames within a

movie clip. The structure for the data in this tag is as follows:

// supporting structures

SceneData

{

 UI32 FrameOffset

 String SceneName

}

FrameData

{

 UI32 FrameNumber

 String FrameLabel

}

// Tag structure

DefineSceneAndFrameLabelData

{

 RecordHeader Header

 UI32 SceneCount

 SceneData Scenes[SceneCount]

 UI32 FrameCount

 FrameData Frames[FrameCount]

}

(The RecordHeader and UI32 data types are defined in the Flash File

Specification link mentioned previously.)

Leveraging the ActionScript Virtual Machine
Page 3

The “DefineSceneAndFrameLabelData” is a variable length tag in which

the “Scene Count” integer is supplied, followed by the number of scene

records specified by the Scene Count. The vulnerable function (called

“ProcessSFLData” for simplicity) first reads in the “Scene Count” value,

performs some basic validation, and then allocates a structure to read in the

following scene records one by one.

.text:30087A42 call SWF_GetEncodedInteger ; Scene Count

.text:30087A47 mov edi, [ebp+arg_0]

.text:30087A4A mov [esi+4], eax

.text:30087A4D mov ecx, [ebx+8]

.text:30087A50 sub ecx, [ebx+4]

.text:30087A53 cmp eax, ecx

.text:30087A55 jg loc_30087BB4

.text:30087A5B test eax, eax

.text:30087A5D jz loc_30087B0E

.text:30087A63 mov ecx, [edi+20h]

.text:30087A66 push 3

.text:30087A68 push 3

.text:30087A6A push 0Ch ; nCount

.text:30087A6C push eax ; nSize

.text:30087A6D call mem_Calloc

Please note the following observations. First, the encoded integer that was

read in is stored at [esi+4], and is immediately compared against ([ebx+8] –

[ebx+4]). This value represents the amount of data left in the file ([ebx+4] is

Leveraging the ActionScript Virtual Machine
Page 4

an offset into a buffer, and [ebx+8] is the total size of that buffer). The use of

“jg” indicates that the comparison is signed, so a negative “Scene Count” value

will pass this check, because it will always be less than some positive amount

of data remaining in the buffer. Obviously, a negative value will also pass the

subsequent check for 0. The negative value is then passed to the mem_Calloc()

function, which treats it as an unsigned value. However, upon initial inspection

of the mem_Calloc() function, the allocation will clearly fail, since integer

overflow is checked when multiplying its nCount and nSize parameters:

.text:301B14D0 mem_Calloc proc near ; CODE XREF:

sub_3003359F+58 p

.text:301B14D0 ;

sub_3003362C+27 p ...

.text:301B14D0

.text:301B14D0 nSize = dword ptr 8

.text:301B14D0 nCount = dword ptr 0Ch

.text:301B14D0 arg_8 = dword ptr 10h

.text:301B14D0 arg_C = dword ptr 14h

.text:301B14D0

.text:301B14D0 push esi

.text:301B14D1 mov esi, [esp+nSize]

.text:301B14D5 push edi

.text:301B14D6 mov edi, [esp+4+nCount]

.text:301B14DA mov eax, esi

.text:301B14DC mul edi

.text:301B14DE test edx, edx

.text:301B14E0 ja short loc_301B14E7 ; overflow, return NULL

.text:301B14E2 cmp eax, 0FFFFFFF0h

.text:301B14E5 jbe short loc_301B14EE

.text:301B14E7

.text:301B14E7 loc_301B14E7: ; CODE XREF:

mem_Calloc+10 j

.text:301B14E7 pop edi

.text:301B14E8 xor eax, eax

.text:301B14EA pop esi

.text:301B14EB retn 10h

Leveraging the ActionScript Virtual Machine
Page 5

So, this allocation is guaranteed to fail. The vulnerability in the code is that

there is no check for an allocation failure. Below is the code that follows the call

to mem_Calloc():

.text:30087A6D call mem_Calloc

.text:30087A72 push eax

.text:30087A73 mov ecx, esi

.text:30087A75 call sub_3004A766

.text:30087A7A and [ebp+arg_0], 0

.text:30087A7E cmp dword ptr [esi+4], 0

.text:30087A82 jle short loc_30087AFA

.text:30087A84 xor ebx, ebx

The function called immediately after mem_Calloc() performs a variety of

tasks, the most important of which is to populate [esi] with the pointer returned

from mem_Calloc(). In this case, that means setting [esi] to NULL rather than

point to a valid location in memory. A loop is subsequently entered for reading

in the scene records. Note that this loop is never executed since [esi+4], the

integer that was read in earlier, is less than 0. Therefore, the loop is entirely

skipped and execution resumes at 0x30087AFA:

.text:30087AFA loc_30087AFA: ; CODE XREF:

ProcessSFLData+56 j

.text:30087AFA mov eax, [esi+4]

.text:30087AFD mov ecx, [esi]

.text:30087AFF lea eax, [eax+eax*2]

.text:30087B02 lea eax, [ecx+eax*4]

.text:30087B05 mov ecx, [ebp+arg_8]

.text:30087B08 sub ecx, [eax-0Ch]

.text:30087B0B mov [eax-4], ecx

Leveraging the ActionScript Virtual Machine
Page 6

The code above does roughly the following:

struct _scene_record *record;

record = esi_struct->record_ptr + esi_struct->scene_count;

// or, without pointer arithmetic:

// char *pointer = (char *)esi_struct->record_ptr +

// esi_struct->scene_count * 12;

record--;

record->offset_8 = (DWORD)arg_8 - record->offset_0;

So, if “pointer” is NULL, the address being written to can be chosen by the

attacker by specifying an integer of the format: (0x80000000 | ((address + 4)/

12)). Note that there is a restriction on which address an attacker may write to:

it must be an address that is evenly divisible by 12 when 4 is added to it.

The value written to this location (denoted as arg_8 in the pseudocode above)

is primarily the unsigned 16-bit “Frame Count” value read from the SWF

file header, and so is controllable by the user. “Frame-Count” is a short but is

written as a DWORD, and is also subtracted from by another value in memory,

thus complicating exploitation.

Leveraging the ActionScript Virtual Machine
Page 7

Exploiting the Bug
Usually when exploiting an arbitrary memory overwrite vulnerability, the easiest

and most direct way to seize execution control is to overwrite a function pointer

of some kind. However, in this scenario, writing a valid pointer to a useful

location in memory is difficult because the value being written is not exactly a

value of the attacker’s choosing. To further complicate exploitation, the memory

location being written to is not completely arbitrary. It must be evenly divisible

by 12 when 4 is added to it (which also implies it must be DWORD aligned – no

partial pointer overwrites). Therefore, an alternate strategy will likely be more

useful in exploiting this vulnerability. The attack chosen to exploit this bug

utilizes the ActionScript Virtual Machine (AVM) in order to gain execution, and

will be discussed once some of the basics have been covered.

Basics
Some basics about the AVM mechanics will help explain how exploitation is

achieved. The details provided are specific to the ActionScript Virtual Machine

2 Virtual Machine (AVM2), which is what ActionScript 3.0 code is compiled for.

Flash Players that support ActionScript 3.0 and later (Flash Player versions 9

and up) implement a full virtual machine in which ActionScript code is verified

and run. This contrasts with some of the earlier versions, where commands

were compiled as a series of records that were parsed and executed sequentially.

ActionScript “Files” are supplied as a blob of binary data encapsulated in

a “DoABC” tag within an SWF file (tag type 0x52). This ActionScript file

format – as well as other details about the virtual machine’s functionality – is

documented in some detail by Adobe, and is available at http://www.adobe.

com/devnet/actionscript/articles/avm2overview.pdf. Quite a few structures

need to be present for a typical ActionScript file, but such details do not

pertain to the discussion of exploitation. Therefore, the focus will be primarily

on the ActionScript bytecode itself, except in circumstances where further

explanation is required.

Leveraging the ActionScript Virtual Machine
Page 8

ActionScript files contain methods, which in turn contain bytecode that is to

be executed in an AVM2 environment. The bytecode undergoes two distinct

phases: verification and interpretation. The verifier is responsible for ensuring

that the code is legitimate and well-formed, and the interpreter simply parses

each instruction and executes whatever operation the instruction implies.

Each method has a variable number of “local registers,” an evaluation stack

for storing operand data as well as results, and a scope stack for holding scope

objects. The amount of local registers and size of the two stacks are indicated

in a method_body_info structure specific to the method in question. This

structure, defined in the aforementioned Adobe AVM2 document, is as follows:

method_body_info

{

 u30 method

 u30 max_stack

 u30 local_count

 u30 init_scope_depth

 u30 max_scope_depth

 u30 code_length

 u8 code[code_length]

 u30 exception_count

 exception_info exception[exception_count]

 u30 trait_count

 traits_info trait[trait_count]

}

Leveraging the ActionScript Virtual Machine
Page 9

Various instructions in the AVM2 language allow access to specific elements

of the register list and the two stacks. Interestingly, the interpreter function

responsible for executing ActionScript bytecode allocates the local registers,

the evaluation stack, and the scope stack contiguously on the runtime stack in

the ActionScript3_Execute() function. The relevant code is shown:

.text:30184CF0 call SWF_GetEncodedInteger_0

.text:30184CF5 mov [ebp+6Ch+locationBase], eax

.text:30184CF8 lea eax, [ebp+6Ch+var_40]

.text:30184CFB push eax

.text:30184CFC call SWF_GetEncodedInteger_0

.text:30184D01 mov esi, eax

.text:30184D03 lea eax, [ebp+6Ch+var_40]

.text:30184D06 push eax

.text:30184D07 call SWF_GetEncodedInteger_0

.text:30184D0C mov edi, eax

.text:30184D0E lea eax, [ebp+6Ch+var_40]

.text:30184D11 push eax

.text:30184D12 call SWF_GetEncodedInteger_0

.text:30184D17 sub eax, edi

.text:30184D19 mov edi, eax

.text:30184D1B lea eax, [ebp+6Ch+var_40]

.text:30184D1E push eax

.text:30184D1F mov [ebp+6Ch+var_A8], edi

.text:30184D22 call SWF_GetEncodedInteger_0

.text:30184D27 mov eax, [ebp+6Ch+var_40]

.text:30184D2A mov [ebp+6Ch+var_48], eax

.text:30184D2D lea eax, [edi+esi]

.text:30184D30 add eax, [ebp+6Ch+locationBase]

.text:30184D33 add esp, 14h

.text:30184D36 shl eax, 2

.text:30184D39 add eax, 3 ; (max_stack + local_count

+ (max_scope_depth – init_scope_depth)) * 4 + 3

.text:30184D3C and eax, 0FFFFFFFCh

.text:30184D3F call __alloca_probe

[Note: Astute readers will notice that there appears to be an integer overflow in
the allocation of these structures. However, things aren’t quite what they seem.
The integers used for the size calculation of this allocation are validated prior to
executing this function (to some extent, sort of…).]

Leveraging the ActionScript Virtual Machine
Page 10

After this function performs a few more initialization tasks, it executes the

bytecode for the given method. Instructions that access local registers typically

refer to the register by index, starting from 0. Instructions that access the

stack(s) usually access elements on the top of the stack implicitly (or put new

elements at the top of the stack). Either way, no verification is performed with

regard to where data is being placed or read from by these instructions, because

the verifier has already done that job. Specifically, it has guaranteed that local

register indexes are in bounds, and also that there are no code paths where the

stack can be inconsistent when a given instruction is executed (i.e. There are

adequate elements on the stack for a given instruction. The values on the stack

are of the correct types, and placing a new value on the stack won’t overflow it).

Needless to say, if there was a way to execute AS3 instructions that had never

been verified, it would be quite dangerous. Unverified instructions would be

able to manipulate the native runtime stack – made possible by specifying

invalid local register indexes, or pushing/popping too many values from the

AS3 evaluation stack.

Importantly, each value in a register or on a stack is stored as a DWORD which

contains both typing information and a value. So, using instructions that write

values to the “local registers” or the stack will result in an encoded data value

being written to the destination location which includes typing information

(the bottom three bits are reserved for this typing information). For example,

consider the instruction:

pushshort 0x80

The resultant DWORD this instruction will write to the stack will be

((0xFFFFFF80 << 3) | 0x06).

Leveraging the ActionScript Virtual Machine
Page 11

Breaking the Verifier
Now that the AVM2 basics have been explained, an exploitation methodology

can be developed. The attack works by manipulating a data structure used

by the AVM2 verifier such that it doesn’t correctly verify the ActionScript

instructions for a given method. As mentioned in the previous section,

the ability to execute unverified AS instructions has several interesting

consequences, one of which is being able to read or write data values off of the

Flash application’s runtime stack. By overwriting EIP or some other useful

pointer, control of execution flow is possible.

The ActionScript3 verifier performs a variety of tasks. It ensures that

instructions and their parameters are well-formed and legal, performs dataflow

analysis to verify the integrity of the evaluation stack, and completes additional

tasks outside the scope of this document. The analysis of instructions and their

operands are done in a loop, which looks roughly like this:

Leveraging the ActionScript Virtual Machine
Page 12

#define TOP_BITS_SET(x) ((x) & 0xC0000000)

unsigned char *codePtr, *codeEnd;

DWORD opCode, instruction_length = 0;

for(codePtr = buffer, codeEnd = buffer + length; codePtr < bufferEnd;

codePtr += instruction_length)

{

 DWORD arg_dword1, arg_dword2, arg_short, arg_byte;

 unsigned char *tmpPtr = codePtr;

 instruction_length = 0;

 opCode = *codePtr;

 if(AS3_ArgMask[opCode] == 0xFF) // unused opcode

 {

 .. throw exception ..

 }

 .. check exception table stuff ..

 arg_dword1 = arg_dword2 = arg_short = arg_byte = 0;

 opcode_getArgs(&tmpPtr, &arg_dword1, &arg_short,

 &arg_dword2, &arg_byte);

 if(opCode == 0x25 || (TOP_BITS_SET(arg_dword1|arg_dword2)

 && (opCode != 0xEE || TOP_BITS_SET(arg_dword2))))

 {

 .. throw exception ..
 }

 instruction_length = tmpPtr - codePtr;

 codePtr += instruction_length;

 if(codePtr > codeEnd)

 {

 .. throw exception ..

 }

 switch(opCode)

 {

 .. verify operands for individual instructions ..

 }

}

Leveraging the ActionScript Virtual Machine
Page 13

Many irrelevant details have been trimmed from the previous sample. Of

particular interest is the opcode_getArgs() function, which looks something

like this:

void opcode_getArgs(unsigned char **dataPtr, DWORD *arg_dword1, DWORD

*arg_short, DWORD *arg_dword2, DWORD *arg_byte)

{

 unsigned char *ptr = *dataPtr;

 DWORD opCode = *ptr++, mask = AS3_argmask[opCode];

 // only 2 operations with 1 byte operand

 if(opCode == INS_PUSHBYTE || opCode == INS_DEBUG)

 {

 *arg_byte = *ptr++;

 mask--;

 }

 // if mask is <= 0, all done

 if(mask <= 0)

 {

 *dataPtr = ptr;

 return;

 }

 // instructions with a 24-bit signed operand

 if(opCode >= INS_IFNLT && opCode <= INS_LOOKUPSWITCH)

 {

 char msb = ptr[2]; // will sign-extend

 *arg_short = (msb << 16) | *(unsigned short *)&ptr[0]

 ptr += 3;

 }

 else

 *arg_dword1 = SWF_GetEncodedInteger(&ptr);

 if(opCode == INS_DEBUG)

 {

 ptr++;

 mask--;

 }

 if(mask > 1)

 *arg_dword2 = SWF_GetEncodedInteger(&ptr);

 *dataPtr = ptr;

 return;

}

Leveraging the ActionScript Virtual Machine
Page 14

As seen, the length of an instruction depends on what operands a given opcode

is deemed to have, which is calculated by checking the opcode itself, as well

as a byte array named AS3_argmask. The AS3 interpreter does not work

out instruction lengths the same way; it has a switch statement based on the

opcode value and interprets each opcode specifically. If an unknown opcode is

encountered, the interpreter silently skips the unknown instruction.

So, by overwriting a portion of this AS3_argmask array, it is possible to make

an instruction appear longer or shorter than it really is to the verifier. The result

is a desynchronization between what code the verifier sees and what code is

actually executed by the AVM2 interpreter. There are two different ways that

desynchronization could be achieved:

•	 Changing	an	opcode	mask	from	zero	to	non-zero:	a	variable	number	of	trailing	bytes	

will be interpreted as operands by the verifier, but as new instructions by the AVM2

interpreter.

•	 Changing	an	opcode	mask	from	non-zero	to	zero:	trailing	bytes	will	not	be	

interpreted as operands by the verifier when they should be, and the AVM2

interpreter will correctly use them as operands. This has a similar net effect: new

instructions will begin at locations in the byte stream that the verifier has not

correctly parsed and ensured to be safe.

Using either of these methods will create the opportunity for executing

unverified ActionScript code.

Leveraging the ActionScript Virtual Machine
Page 15

When selecting a target mask to overwrite, keep in mind that four masks are

going to be corrupted, since a DWORD is written. Care should be taken to

ensure that other legitimate AS3 methods will be disrupted as little as possible

(Flash internally executes a significant number of AS3 methods, and if they

don’t function correctly, the malicious method supplied in this SWF file will

never be reached.). With this in mind, the ideal targets in AS3_argmask array

are unused bytecodes – those with an 0xFF mask. Recall from the disassembly

shown in the last section that encountering unused opcodes during verification

would usually result in an exception being thrown. However, by overwriting

the mask value with anything that is not 0xFF, the verifier will deem it to be a

valid opcode and read trailing bytes as parameters. As previously explained, the

interpreter will silently skip a single byte, and thus all of the trailing bytes that

the verifier deemed to be operands will be executed as instructions.

[Note: the exact amount of “trailing bytes” that are decoded as operands is
variable, since integer operands can be anywhere between one and five bytes;
therefore,	the	values	that	those	bytes	take	on	are	significant.]

Constructing ActionScript ByteCode
Since overwriting values in the AS3_argmask array can result in executing

unverified AS3 bytecode, a useful bytecode stream needs to be constructed.

The AS3 bytecode should consist of a series of “marker” opcodes (that is, the

unused bytecode that has had its mask value overwritten in AS3_argmask)

followed by unverified instructions that are useful to execute. Ideally, the goal

is to achieve the following steps:

1. Save the original EIP

2. Replace it with a pointer to data controllable by the user

3. Have ActionScript3_Execute() return

4. Have shellcode save register state and stack location

5. Allow shellcode to execute whatever it wants

6. Have shellcode restore original EIP on the stack and register context

7. Allow flash to return like nothing ever happened

Leveraging the ActionScript Virtual Machine
Page 16

As stated earlier, arbitrary DWORD values cannot be written to the “local

registers” unmodified in AS3, due to value/type encoding. Therefore, it is

not possible to set EIP to an arbitrary pointer of the attacker’s choosing.1 It is

possible, however, to move a value already on the stack to somewhere else on

the stack unmodified. Moving a value from the stack to a register or between

registers does not require that the value be decoded and then re-encoded – that

would be redundant. Moving values around on the stack is very interesting for

two reasons:

1. It is possible to move the saved EIP on the runtime stack for ActionScript3_

Execute() to elsewhere on the stack.

2. It is possible to move another pointer already on the stack over EIP, without

corrupting anything else.

The ability to perform both of these operations will allow construction of a

bytestream that achieves the steps mentioned earlier. For the second part,

a pointer must exist on the stack that can be moved over the saved EIP of

ActionScript3_Execute(). As it happens, there is such a pointer on the stack,

pointing to data the user can control – namely a “codePtr” variable, which is

pointing to the AS3 bytecode being currently executed.

Leveraging the ActionScript Virtual Machine
Page 17

1 It is possible to write an integer with the top three bits cleared, and when it is left-shifted it forms a

valid address. But this would add the reliance on some fixed address where shellcode resides, which

should be avoided if possible. Also, some data types are actually encoded as pointers, but using

them would be a little complicated. The biggest problem is that these pointers usually point to data

structures that contain pointers to user controlled data. Additionally, because the lower three bits

include typing information, the resultant pointer would point several bytes into this data structure.

The Dual Bytestream Problem

In order for the attack to succeed, the data pointed to by the “codePtr” variable

must point to a bytestream that contains valid intel instructions as well as valid

AS3 bytecode. Although the AS3 interpreter doesn’t validate the bytestream

at all, recall that the verifier has validated it to some extent (except for the

“trailing bytes” of each marker byte that has been inserted). The code also must

not crash the interpreter (register indexes that are too far out of bounds would

cause such a crash). When EIP is replaced with codePtr, the bytestream will

look something like this:

MarkerMarker Save codePTR
Opcode

Useful intel
code

..Replace
EIP etc..

Saved codePtr
(and therefore EP
when overwritten)

points here

Since codePtr points to the marker byte that was chosen, the marker must be a

valid intel opcode that will not cause the application to crash at the very least,

and not affect register state much either. Add to this the address restrictions

mentioned previously (address + 4 must be divisible by 12), and the range of

options appears limited. One suitable candidate for Flash9d/IE is using the marker

byte 0xF5, which is the intel CMC instruction. It has the following properties:

1. The address that needs to be overwritten is 0x302047C4, which is divisible by

12 when 4 is added to it.

2. All four AS3 bytecodes 0xF4, 0xF5, 0xF6, and 0xF7 are unused, so

overwriting those four masks should not affect legitimate AS3 bytecode.

3. The intel CMC instruction is benign – all it does is flip the CF bit in the

EFLAGS register.

Leveraging the ActionScript Virtual Machine
Page 18

Perfect. For Flash9e/IE, the plugin is positioned slightly differently in memory,

such that the alignment for AS3_argmask is different and 0xF5 cannot be used.

However, the 0xF8 or 0xF9 marker may be used (the intel instructions CLC and

STC, respectively). As for Firefox, the 0xFC marker value is usable (the intel

CLD instruction) for Flash9d, and the 0xF5 marker (CMC) for Flash9e.

The Final ByteStream

A marker byte has been selected, and the goals have been set, so the bytestream

needed should be growing clearer. Before an example bytestream is shown, a

few AS3 instructions that will be utilized are illustrated.

Bytecode Name Explanation

Marker

AS_GET_LOCAL

AS_SET_LOCAL

AS_POP

AS_NOP

AS_RETURN_VOID

The marker byte that has been chosen. The following few
bytes will be incorrectly marked as operands by the verifier
but will be executed as instructions by the interpreter.

Get a value from a local register. This opcode takes one
operand – a local register index (which is used in a memory
calculation as a source for data: register_memory_pointer
+ index * 4). Since this will be executed in an unverified
context, it requires getting any arbitrary value off the stack.
The value read from the “local register” will be placed on
the AS3 evaluation stack.

The compliment of AS_GET_LOCAL. This writes a value
to a “local register,” which again will be an out of bounds
location in this scenario.

Pop a value from the AS3 evaluation stack.

Do nothing.

Return from the current method, which will cause
ActionScript3_Execute() to finish its work and return
to the caller.

Leveraging the ActionScript Virtual Machine
Page 19

The bytestream is now presented in several chunks, with accompanying

explanations.

Marker AS_GET_LOCAL Offset to EIP

Use an unverified AS_GET_LOCAL command to get the saved EIP and place it

on the AS3 evaluation stack.

Marker AS_GET_LOCAL Offset to
codePtr

Use an unverified AS_GET_LOCAL to get the codePtr value off the stack and

place it on the AS3 evaluation stack.

Marker 0xE8 0xFE 0xFF 0xFF 0x00AS_PUSH_SORT

This one requires some explanation.

From the AS3 interpreter’s point of view, the marker byte will be treated as

a NOP, and so will 0xE8, because it is an undefined instruction. Then the

AS_PUSH_SHORT instruction will be encountered, and the remaining bytes

will be interpreted as an encoded integer which will be pushed on to the AS3

evaluation stack.

Leveraging the ActionScript Virtual Machine
Page 20

From the native intel point of view, this is the location that will be pointed to

when EIP is replaced. The marker byte will do nothing effectively, and the

following 0xE8 byte will cause a jump to elsewhere in memory. In this case,

backwards, to where some shellcode exists. More explanation on why shellcode

exists there will be explained in the “Insert Shellcode” section later.

Marker AS_POP AS_NOP

This just pops the bogus short that was pushed on to the AS3 evaluation stack

in the previous step. The evaluation stack now has the saved codePtr value at

the top.

Marker AS_SET_LOCAL Offset to EIP

This overwrites the saved EIP with the codePtr value which is at the top of

the AS3 evaluation stack. Notice that the evaluation stack is not empty; it still

contains the original EIP. Therefore, there is a saved copy of the original EIP on

the stack when the shellcode executes, and its relative location on the stack is

known. Nothing else has been corrupted.

AS_RETURN_VOID

Finished! Let ActionScript3_Execute() return, and control of the application

will be seized.

Leveraging the ActionScript Virtual Machine
Page 21

Putting It All Together
All of the necessary information for producing an exploit using this methodology

is now known. The procedure for performing the attack is as follows:

Step 1. Perform Overwrite

Triggering the bug is the easy part. It simply involves constructing a

“DefineSceneAndFrameLabelData” tag with a negative scene count which,

when multiplied by 12, will point to the relevant address in the AS3_argmask

table. Specifically, the formula for writing the correct “Scene Count” value is:

address = AS3_argmask_address + (marker_byte – (marker_byte % 4)) + 4

scene_count = (0x80000000 | (address / 12))

Recall that the value written to this address will be based on the 16-bit “Frame

Count” value in the SWF file header, which can be pretty much anything, as

long as the mask being overwritten ends up being a positive value.

[Note: As mentioned previously, the fact that a DWORD is overwritten means
that	four	masks	in	the	AS3_argmask	table	are	going	to	be	overwritten,	so	
some	care	must	be	taken	to	ensure	that	all	four	masks	being	corrupted	will	not	
affect	properly	formed	AS3	methods.	By	having	a	reasonable	size	frame_count	
value	in	the	header,	the	two	masks	that	make	up	the	least	significant	bytes	of	
the	DWORD	can	be	easily	made	positive	values.	For	the	other	two	masks,	it	is	
dependant on what “DWORD” is at the location eight bytes before the memory
location being written to. In the end, this is not a significant hurdle.]

Leveraging the ActionScript Virtual Machine
Page 22

Step 2. Insert Bogus DoABC Tag

Generating a well-formed “ActionScript” file is required for this step, which

contains an AS3 method with a bytestream similar to the one discussed earlier.

Again, the specifics of this format are recounted at the following link: http://

www.adobe.com/devnet/actionscript/articles/avm2overview.pdf.

Step 3. Insert Shellcode

Recall that when discussing the malicious bytestream, a backwards branch was

performed to some shellcode which happened to be before the AS3 bytecode

in memory. The explanation for this is simple: the AS3 bytecode is not copied

out of the original SWF file buffer when it is processed. The pointer to the code

is pointing to a location within the malicious file (which has been entirely read

into memory). Therefore, to have shellcode just before the AS3 bytecode in

memory, an SWF tag must precede the DoABC tag that is filled with shellcode.

A wide variety of tags could be used for this, one example being the DefineBits

tag (tag 0x06).

So, the completed SWF file would look something like this:

[SWF Header]

[Corrupt DefineSceneAndFrameLabelData tag]

[DefineBits tag with shellcode]

[DoABC tag with malicious bytecode]

[ShowFrame tag]

Notice the last tag in this file is a “ShowFrame” tag (tag 0x01). This is required

for the methods in the DoABC tag to be executed.

Leveraging the ActionScript Virtual Machine
Page 23

Reliability Notes
The methodology presented is quite robust. It relies on a single address – the

address of the AS3_argmask table. The EIP redirection, address of shellcode,

and fixup code for restoring EIP require no hard-coded addresses of any kind.

Additionally, the method of utilizing the AVM to gain execution has a low

impact on the rest of the process. Apart from unused AS3_argmask values

being corrupted, gaining execution from that point does not damage any

other structures or variables. EIP can be neatly overwritten without affecting

anything else in the function and maintaining register state. This makes it

possible to fully recover the process state after the shellcode has executed

without risking the browser crashing.

There are several factors that also affect exploitation reliability that have not

been touched on thus far. They are addressed below.

Internet Explorer/Firefox Parallel Exploitation
Microsoft® Internet Explorer (IE) and Firefox use different binaries for flash,

due to their differing plugin architectures. The binaries contain identical code

except for the glue code to communicate with the browser. Interestingly, the

base address of the IE version and Firefox version are identical. Some testing

was done for generating SWF files that exploited the vulnerability multiple

times (by containing multiple corrupt “DefineSceneAndFrameLabelData”

tags). Experiments proved that the data section for IE and Firefox were closely

aligned such that it was possible to overwrite both the Firefox and IE target

addresses in a single file, without causing a crash in either browser. Put another

way, it is possible to generate an SWF file that successfully exploits both IE and

Firefox for a given flash version without crashing either one. This was verified

with both browsers for the Flash9d and also the Flash9e plugin. Previous

versions were not tested but are expected to exhibit the same behaviour.

Leveraging the ActionScript Virtual Machine
Page 24

Vista and ASLR
Vista’s ASLR features require that the binary is compiled with the /

dynamicbase switch available on recent Microsoft compilers. Essentially,

using this switch sets a flag in the PE header (0x40 in the DllCharactersitics

member of the optional header) that will indicate that the binary should receive

a random base address when loaded. Since flash does not use this switch, ASLR

does not cause the Flash DLL to be moved in memory in Windows® Vista, and

hence can still be reliably exploited. Combining this with the previous point, it

is possible to generate an SWF file that will reliably exploit both IE and Firefox

on all recent versions of the Windows operating system, including Vista.

Conclusion
Memory corruption vulnerabilities are now being exploited using application-

specific attacks, like the scenario leveraging the ActionScript Virtual Machine.

Learning how this attack works will help refine countermeasures to protect

this and other similar vulnerabilities. For more information about the flash

vulnerability, please visit http://www.iss.net/threats/289.html to read the

complete security advisory prepared by the IBM Internet Security Systems

research and development team.

Leveraging the ActionScript Virtual Machine
Page 25

© Copyright IBM Corporation 2008

IBM Global Services

Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America.

04-08

All Rights Reserved.

IBM and the IBM logo are trademarks or registered
trademarks of International Business

Machines Corporation in the United States, other
countries, or both.

Internet Security Systems, Inc., is a wholly-owned
subsidiary of International Business Machines
Corporation.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or
both.

Other company, product and service names may be
trademarks or service marks of others.

